Statistical Physics of Information Measures

Neri Merhav

Department of Electrical Engineering

Technion – Israel Institute of Technology

Technion City, Haifa, Israel

Partly joint work with **D. Guo** (Northwestern U.) and **S. Shamai** (Technion).

Physics of Algorithms '09, Santa Fe, NM, USA, Aug. 31 – Sep. 4, 2009

Outline

Relations between Information Theory (IT) and statistical physics:

- Conceptual aspects relations between principles in the two areas.
- Technical aspects identifying similar mathematical formalisms and borrowing techniques.

In this talk we:

- Briefly review basic background in IT.
- Discuss some physics of the Shannon limits.
- Briefly review basic background in estimation theory.
- Touch upon statistical physics of signal estimation via the mutual information.

First Part:

Physics of the Shannon Limits

The Shannon Limits

Lossless data compression:

compression ratio $\geq H$ = entropy.

Lossy compression:

compression ratio $\geq R(D)$ = rate-distortion func.

Channel coding:

coding rate $\leq C$ = channel capacity.

Joint source—channel coding:

decoding error $\geq R^{-1}(C)$ = distortion-rate func. at rate C.

etc. etc. etc.

The Information Inequality

Each of the above—mentioned fundamental limits of IT, as well as many others, is based on the information inequality in some form:

For any two distributions, P and Q, over an alphabet \mathcal{X} :

$$D(P||Q) \stackrel{\Delta}{=} \sum_{x} P(x) \log \frac{P(x)}{Q(x)} \ge 0.$$

In physics, it is known as the Gibbs inequality.

The Gibbs Inequality

Let $\mathcal{E}_0(x)$ and $\mathcal{E}_1(x)$ be two Hamiltonians of a system. For a given β , let

$$P_i(x) = \frac{e^{-\beta \mathcal{E}_i(x)}}{Z_i}, \qquad Z_i = \sum_x e^{-\beta \mathcal{E}_i(x)}, \quad i = 0, 1.$$

Then,

$$0 \leq D(P_0||P_1) = \left\langle \ln \frac{e^{-\beta \mathcal{E}_0(X)}/Z_0}{e^{-\beta \mathcal{E}_1(X)}/Z_1} \right\rangle_0$$
$$= \ln Z_1 - \ln Z_0 + \beta \left\langle \mathcal{E}_1(X) - \mathcal{E}_0(X) \right\rangle_0$$

or

$$\langle \mathcal{E}_1(X) - \mathcal{E}_0(X) \rangle_0 \ge kT \ln Z_0 - kT \ln Z_1$$

= $F_1 - F_0$

Interpretation of $\langle \mathcal{E}_1(X) - \mathcal{E}_0(X) \rangle_0 \geq \Delta F$

- **▶** A system with Hamiltonian $\mathcal{E}_0(x)$ in equilibrium $\forall t < 0$. Free energy = $-kT \ln Z_0$.
- At t=0, the Hamiltonian jumps, by $W=\mathcal{E}_1(x)-\mathcal{E}_0(x)$: from $\mathcal{E}_0(x)$ to $\mathcal{E}_1(x)$ by abruptly applying a force. Energy injected: $\langle W \rangle_0 = \langle \mathcal{E}_1(X) \mathcal{E}_0(X) \rangle_0$.
- New system, with Hamiltonian \mathcal{E}_1 , equilibrates. Free energy $= -kT \ln Z_1$.

Gibbs inequality: $\langle W \rangle_0 \ge \Delta F$.

$$\langle W \rangle_0 - \Delta F = kT \cdot D(P_0 || P_1)$$

is the dissipated energy = entropy production (system + environment) due to irreversibility of the abruptly applied force.

Example – Data Compression and the Ising Model

Let $X \in \{-1, +1\}^n \sim \text{Markov chain } P_0(x) = \prod_i P_0(x_i|x_{i-1}) \text{ with }$

$$P_0(x|x') = \frac{\exp(Jx \cdot x')}{Z_0}, \quad x, x' \in \{-1, +1\}$$

Code designer thinks that $X \sim \text{Markov}$ with parameters:

$$P_1(x|x') = \frac{\exp(Jx \cdot x' + Kx)}{Z_1(x')}.$$

 $D(P_0||P_1) = loss$ in compression due to mismatch. Easy to see that

$$\mathcal{E}_0(\boldsymbol{x}) = -J \cdot \sum_i x_i x_{i-1}; \quad \mathcal{E}_1(\boldsymbol{x}) = -J \cdot \sum_i x_i x_{i-1} - B \cdot \sum_i x_i$$

where

$$B = K + \frac{1}{2} \ln \frac{\cosh(J - K)}{\cosh(J + K)}.$$

Thus, $W = -B \cdot \sum_{i} x_{i}$ means an abrupt application of the magnetic field B.

Physics of the Data Processing Theorem (DPT)

Mutual information: Let $(U, V) \sim P(u, v)$:

$$I(U; V) \equiv \left\langle \log \frac{P(U, V)}{P(U)P(V)} \right\rangle.$$

DPT:

$$X \to U \to V$$
 Markov chain $\Longrightarrow I(X;U) \ge I(X;V)$.

Pf:

$$I(X;U) - I(X;V) = \left\langle D(P_{X|U,V}(\cdot|U,V) || P_{X|V}(\cdot|V)) \right\rangle \ge 0. \quad \Box$$

Supports most, if not ∀, Shannon limits.

Physics of the DPT (Cont'd)

Let $\beta = 1$. Given (u, v), let

$$\mathcal{E}_0(x) = -\ln P(x|u,v) = -\ln P(x|u); \quad \mathcal{E}_1(x) = -\ln P(x|v).$$

$$Z_0 = \sum_{x} e^{-1 \cdot [-\ln P(x|u,v)]} = \sum_{x} P(x|u,v) = 1$$

and similarly, $Z_1=1$. Thus, $F_0=F_1=0$, and so, $\Delta F=0$. After averaging over P_{UV} :

$$\langle W(X) \rangle_0 = \langle -\ln P(X|V) + \ln P(X|U) \rangle$$

= $H(X|V) - H(X|U)$
= $I(X;U) - I(X;V)$.

$$\langle W \rangle_0 = I(X;U) - I(X;V) \ge 0 = \Delta F.$$

Discussion

The relation

$$\langle W \rangle_0 - \Delta F = kT \cdot D(P_0 || P_1) \ge 0$$

is known (Jarzynski '97, Crooks '99, ..., Kawai et. al. '07), but with different physical interpretations, which require some limitations.

Present interpretation – holds generally; Applied in particular to the DPT.

In our case:

- **●** Maximum irreversibility: $\langle W \rangle_0$ fully dissipated: $\Delta F = 0$.
- All dissipation in the system, none in the environment:

$$\langle W \rangle_0 = T\Delta S = 1 \cdot [H(X|V) - H(X|U)].$$

Rate loss due to gap between mutual informations: irreversible process \iff irreversible info: $I(X;U) > I(X;V) \longrightarrow U$ cannot be retrieved from V.

Relation to Jarzynski's Equality

Let

$$\mathcal{E}_{\lambda}(x) = \mathcal{E}_{0}(x) + \lambda [\mathcal{E}_{1}(x) - \mathcal{E}_{0}(x)]$$

interpolate \mathcal{E}_0 and \mathcal{E}_1 . λ – a generalized force.

Jarzynski's equality (1997): \forall protocol $\{\lambda_t\}$ with $\lambda_t = 0 \ \forall \ t \leq 0$ and $\lambda_t = 1 \ \forall \ t \geq \tau \ (\tau \geq 0)$, the injected energy

$$W = \int_0^{\tau} d\lambda_t [\mathcal{E}_1(x_t) - \mathcal{E}_0(x_t)]$$

satisfies

$$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}.$$

Jensen: $\left\langle e^{-\beta W}\right\rangle \geq \exp\{-\beta \left\langle W\right\rangle\}$ so, $\left\langle W\right\rangle \geq \Delta F$ more generally.

Equality – for a reversible process – W = deterministic.

Informational Jarzynski Equality

Taking

$$\mathcal{E}_0(x) = -\ln P_0(x), \quad \mathcal{E}_1(x) = -\ln P_1(x), \quad \beta = 1$$

and defining a "protocol" $0 \equiv \lambda_0 \to \lambda_1 \to \ldots \to \lambda_n \equiv 1$, and

$$W = \sum_{i=0}^{n-1} (\lambda_{i+1} - \lambda_i) \ln \frac{P_0(X_i)}{P_1(X_i)}, \quad X_i \sim P_{\lambda_i} \propto P_0^{1-\lambda_i} P_1^{\lambda_i},$$

one can show:

$$\left\langle e^{-W} \right\rangle = 1 = e^{-\Delta F}.$$

Jensen: generalized information inequality:

$$\int_0^1 d\lambda_t \left\langle \ln \frac{P_0(X)}{P_1(X)} \right\rangle_{\lambda_t} \ge 0.$$

Summary of First Part

- Suboptimum commun. system irreversible process.
- Fundamental limits of IT ←⇒ second law.
- Possible implications of Jarzynski's equality in IT.

Second Part:

Statistical Physics of Signal Estimation via the Mutual Information

Signal Estimation – Preliminaries

Let

$$Y = X + Z$$
 (all vectors in \mathbb{R}^n)

where X is the desired signal and Z is noise $\perp X$.

Estimator: any function $\hat{X} = f(Y)$. We want \hat{X} as 'close' as possible to X.

mean square error
$$= \left\langle \left\| \boldsymbol{X} - \hat{\boldsymbol{X}} \right\|^2 \right\rangle = \left\langle \left\| \boldsymbol{X} - f(\boldsymbol{Y}) \right\|^2 \right\rangle.$$

A fundamental result: minimum mean square error (MMSE) = conditional mean:

$$oldsymbol{X}^* = f^*(oldsymbol{y}) = \langle oldsymbol{X}
angle_{oldsymbol{Y} = oldsymbol{y}} \equiv \int \mathsf{d}oldsymbol{x} \cdot oldsymbol{x} P(oldsymbol{x} | oldsymbol{y}).$$

Normally – difficult to apply X^* and assess performance.

 X^* and MMSE may exhibit irregularities – threshold effects \longleftrightarrow phase transitions in analogous physical systems. Motivates a statistical–mechanical perspective.

The I-MMSE Relation

[Guo–Shamai–Verdú 2005]: for Y = X + Z, $Z \sim \mathcal{N}(0, I \cdot 1/\beta)$, regardless of P(X):

$$\mathsf{mmse}(\boldsymbol{X}|\boldsymbol{Y}) = 2 \cdot \frac{\mathsf{d}}{\mathsf{d}\beta} I(\boldsymbol{X};\boldsymbol{Y}),$$

where $\operatorname{mmse}(\boldsymbol{X}|\boldsymbol{Y}) \equiv \langle \|\boldsymbol{X} - f^*(\boldsymbol{Y})\|^2 \rangle$.

Simple example: If $X \sim \mathcal{N}(0, \sigma^2 I)$,

$$\frac{I(X;Y)}{n} = \frac{1}{2}\log(1+\beta\sigma^2)$$

$$\implies \frac{\mathsf{mmse}(\boldsymbol{X}|\boldsymbol{Y})}{n} = \frac{\sigma^2}{1+\beta\sigma^2}.$$

MMSE – calculated using stat–mech via the mutual info and I–MMSE relation

Statistical Physics of the MMSE

$$I(\boldsymbol{X}; \boldsymbol{Y}) = \left\langle \log \frac{P(\boldsymbol{X}|\boldsymbol{Y})}{P(\boldsymbol{X})} \right\rangle_{\beta}$$

$$= \left\langle \log \frac{\exp\{-\beta \|\boldsymbol{Y} - \boldsymbol{X}\|^{2}/2\}}{\sum_{\boldsymbol{x}} P(\boldsymbol{x}) \exp\{-\beta \|\boldsymbol{Y} - \boldsymbol{x}\|^{2}/2\}} \right\rangle_{\beta}$$

$$= -\frac{n}{2} - \langle \log Z(\beta |\boldsymbol{Y}) \rangle_{\beta}$$

where

$$Z(\beta|Y) = \sum_{x} P(x) \exp\{-\beta||Y - x||^2/2\},$$

and so,

$$\mathsf{mmse}(\boldsymbol{X}|\boldsymbol{Y}) = 2 \cdot \frac{\mathsf{d}I(\boldsymbol{X};\boldsymbol{Y})}{\mathsf{d}\beta} = -2\frac{\partial}{\partial\beta}\langle \log Z(\beta|\boldsymbol{Y})\rangle_{\beta}.$$

Similar to internal energy, but here also $\langle \cdot \rangle_{\beta}$ depends on β .

Statistical Physics of the MMSE (Cont'd)

A more detailed derivation yields:

$$\mathsf{mmse}(\boldsymbol{X}|\boldsymbol{Y}) = \frac{n}{\beta} + \mathsf{Cov}\{\|\boldsymbol{Y} - \boldsymbol{X}\|^2, \log Z(\beta|\boldsymbol{Y})\}$$

- The term n/β ~ energy equipartition theorem.
- **Description** Covariance term dependence of $\langle \cdot \rangle_{\beta}$ on β .

Statistical Physics of the MMSE (Cont'd)

In stat. mech:
$$\Sigma(\beta) = \log Z(\beta) + \beta \langle \mathcal{E}(X) \rangle$$
 $= \log Z(\beta) - \beta \frac{\mathsf{d} \log Z(\beta)}{\mathsf{d} \beta} \iff \mathsf{diff. eq.}$

$$\log Z(\beta) = -\beta E_0 + \beta \cdot \int_{\beta}^{\infty} \frac{\mathsf{d} \hat{\beta} \cdot \Sigma(\hat{\beta})}{\hat{\beta}^2}; \quad E_0 = \text{ground--state energy}$$

$$\implies E = -\frac{\mathsf{d} \log Z(\beta)}{\mathsf{d} \beta} = \left[E_0 - \int_{\beta}^{\infty} \frac{\mathsf{d} \hat{\beta} \cdot \Sigma(\hat{\beta})}{\hat{\beta}^2} \right] + \frac{\Sigma(\beta)}{\beta}$$

Similarly for $\langle \log Z(\beta|\mathbf{Y}) \rangle_{\beta}$ except that

$$\Sigma(\beta) \longleftarrow \frac{\beta}{2} \mathsf{Cov}\{\|\boldsymbol{Y} - \boldsymbol{X}\|^2, \log Z(\beta|\boldsymbol{Y})\} - I(\boldsymbol{X}; \boldsymbol{Y})$$

$$E_0 \Longleftarrow rac{1}{2} \left\langle \min_{m{x}} \left\| m{Y} - m{x}
ight\|^2
ight
angle_{m{eta}}.$$

Examples

Example 1 – Random Codebook on a Sphere Surface

$$oldsymbol{Y} = oldsymbol{X} + oldsymbol{Z}; \quad oldsymbol{X} \sim \mathsf{Unif}\{oldsymbol{x}_1, \dots, oldsymbol{x}_M\}, \ M = e^{nR}$$

Codewords: randomly drawn independently uniformly on Surf($\sqrt{n\sigma^2}$).

$$\lim_{n \to \infty} \frac{\langle I(\mathbf{X}; \mathbf{Y}) \rangle}{n} = \begin{cases} \frac{1}{2} \log(1 + \beta \sigma^2) & \beta < \beta_R \\ R & \beta \ge \beta_R \end{cases}$$

where β_R is the solution to the eqn $R = \frac{1}{2} \log(1 + \beta \sigma^2)$. Thus,

$$\lim_{n \to \infty} \frac{\mathsf{mmse}(\boldsymbol{X}|\boldsymbol{Y})}{n} = \left\{ \begin{array}{ll} \frac{\sigma^2}{1 + \beta \sigma^2} & \beta < \beta_R \\ 0 & \beta \ge \beta_R \end{array} \right.$$

A 1st–order ϕ transition in MMSE: At high temp. behaves as if X was Gaussian and at $\beta = \beta_R$ jumps to zero!

Examples (Cont'd)

Example 2 – Sparse Signals

$$X_i = \left(\frac{1-\mu_i}{2}\right) U_i, \quad i = 1, \dots, n$$

where $\mu = (\mu_1, \dots, \mu_n) \sim P(\mu)$ are binary $\{\pm 1\}$; $U_i \sim \mathcal{N}(0, \sigma^2)$ – i.i.d. $\perp \mu$.

$$\begin{split} Z(\beta|\boldsymbol{y}) &= \int_{\mathbb{R}^n} \mathrm{d}\boldsymbol{x} P(\boldsymbol{x}) \exp\{-\beta\|\boldsymbol{y} - \boldsymbol{x}\|^2/2\} & \Longleftarrow P(\boldsymbol{x}) = \sum_{\boldsymbol{\mu}} P(\boldsymbol{\mu}) P(\boldsymbol{x}|\boldsymbol{\mu}) \\ &= \sum_{\boldsymbol{\mu}} P(\boldsymbol{\mu}) \exp\left\{-\frac{1}{2} \sum_{i=1}^n \mathrm{func}(y_i, \mu_i, q)\right\} & \Longleftarrow q \equiv \beta \sigma^2 \\ &= \mathrm{const.} \times \sum_{\boldsymbol{\mu}} P(\boldsymbol{\mu}) \cdot \exp\left\{\sum_{i=1}^n \mu_i h_i\right\} \quad h_i = \mathrm{func}(y_i) \end{split}$$

Sum over $\{\mu\} \equiv \hat{Z}(\beta|y)$: "partition function" of spins in a random field $\{h_i\}$.

Example 2 (Cont'd)

Let $P(\mu) \propto \exp\{nf[m(\mu)]\}$ where $m(\mu) \equiv \frac{1}{n} \sum_i \mu_i$ and f[m] is 'nice'.

$$\hat{Z}(\beta|\boldsymbol{y}) \propto \sum_{\boldsymbol{\mu}} \exp\left\{n\left[f[m(\boldsymbol{\mu})] + \frac{1}{n}\sum_{i}\mu_{i}h_{i}\right]\right\}$$

 \hat{Z} is dominated by configurations with magnetization m^* , solving the zero–derivative equation

$$m = \langle \tanh(f'[m] + H) \rangle$$

where H is a RV pertaining to h_i . $m^* = local$ maximum if:

$$\left\langle \tanh^2(f'[m^*] + H) \right\rangle > 1 - \frac{1}{f''[m^*]}.$$

When this becomes equality (and then reversed), m^* ceases to dominate \hat{Z} (critical point) \Longrightarrow dominant magentization jumps elsewhere.

Example 2 (Cont'd)

Consider the case

$$f[m] = am + \frac{bm^2}{2}$$

 \hat{Z} – similar to the random–field Curie–Weiss (RFCW) model.

We analyze the mutual info using stat—mech methods, and then derive the MMSE using the I–MMSE relation:

MMSE for Example 2

$$\overline{\text{mmse}} = \frac{\sigma^2 q}{2(1+q)^2} + \frac{(1-m_a)\sigma^2}{2} \left[1 - \frac{q(1+q/2)}{(1+q)^2} \right] + \frac{1+m_a}{2} \left[\text{Cov}_0 \{ Y^2, \log[2\cosh(bm^* + a + H)] \} + \left\langle H' \tanh(bm^* + a + H) \right\rangle_0 \right] + \frac{1-m_a}{2} \left[\frac{1}{(1+q)^2} \cdot \text{Cov}_1 \{ Y^2, \log[2\cosh(bm^* + a + H)] \} + \left\langle H' \tanh(bm^* + a + H) \right\rangle_1 \right]$$

where $\langle \cdot \rangle_s$ and Cov_s are w.r.t. $Y \sim \mathcal{N}(0, \sigma^2 s + 1/\beta)$, s = 0, 1, and

$$H' = -\frac{\sigma^2}{2(1+q)} + \frac{q(q+2)Y^2}{2(1+q)^2}.$$

Example 2: Discussion

- \blacksquare MMSE depends on m^* : jumps of m^* yield discontinuities in MMSE.
- lacksquare As m^* jumps, the response of $oldsymbol{X}^*(oldsymbol{Y})$ jumps as well.
- In the C–W model: 1st order transition w.r.t. mag. field and 2nd order transition w.r.t. β . Here a 1st order transition w.r.t. β because dependence on β is via the "magnetic fields" $\{h_i\}$..
- **೨** b=0: i.i.d. spins ⇒ no ϕ transitions ⇒ sparsity alone does not cause ϕ transitions.

Conclusion of Second Part

- MMSE calculated using stat. mech. via the mutual info.
- Statistical—mech techniques can be used to inspect inherent irregularities in the estimation error, via phase transitions.
- Possible to handle situations of mismatch between true prior P and assumed prior Q.